对《九章算术》中的“置”,魏晋时人刘辉曾用“设”来注释,其《少广》“以三乘所得数置中行”,刘辉注为“设三廉之定长”。“置”是具体操作,“设”是操作的全程。唐宋以还,数学书中“设”字渐多,如唐李淳风注《九章算术》,所用一些“设”即为“置”义;又如宋杨辉撰《详解九章算法》,将《九章算术·少广》中的“置全步及分母子”直接引述为“设诸分母子”。这种用法一直沿用到今天,现在解数学题也要先“设”条件。
通此一义,“投少广之术”即“设少广之术”;“所投分”即“所设分”。下面以通用字对《算数书·少广》录文,重新标点,对文义略加疏通,其中为厘清逻辑关系,使用了一个括号。
少广
投少广之术。曰先置广。即曰下有若干步,以一为若干,以半为若干,以三分为若干……积分(以尽所投分同之)以为法。即藉置田二百四十步,亦以一为若干,以为积步,除积步,如法得纵一步。不盈步者,以法命其分。
“投少广之术”,设立少广术算式。
“曰”和下文“即曰”、“即”表示算式内容,也提示三个运算步骤。
“先置广”,首先设置“广”即田地的横边。
“下有若干步,以一为若干,以半为若干,以三分为若干,积分(以尽所投分同之)以为法”,算式下方此时摆出“广”的数值“若干步”,步数包含整数和分数。将一步设定为若干分,半步设定为若干分,三分之一步设定为若干分……以此类推。把“分”累积起来(算法是将所有设定的“分”加起来),作为除数(法)。
已知矩形面积和一条边长,求另一条边长,在使用小数的情况下,是简单的除法题。但中国古代没有小数概念,非整数都用分数表示,难做除法,于是发展出 “少广术”专门解决此类问题。其术是把除数中的分数化为整数,以便相除,从现代数学看,是求出最小公倍数,与各分数相乘,直接将所有分母约掉,再将通分后的分子加起来。《九章算术》中设有公式:“置全步及分母子,以最下分母乘诸分子及全步,各以其母除其子,置之于左,命通分者。又以分母遍乘诸分子及已通者,皆通而同之,并之为法。”看上去很是复杂。《算数书》是简单算法,没有给出求公倍数和通分的公式,而是在算题集中给出预先算好的数值,即当“广”分别包含1-9个相加的分数时,对“一步”、“半步”直到“九分之一步”均设定相应的“分”,供解题者使用。所以术文在求“积分”时,不用通分,直接以对应的数值即“所投分”相加即可。
在以前的研究中,对“下有若干步”,纪志刚认为即指“最下分数的分母”,实则不然。“若干”后面带有单位“步”,是步的数量,而非其中一个分数的分母。这就像一群人站队,个子高的站在最后,我们不能将“外面有若干人”说成“外面站着大个子”。再说这一步骤是求积分的,如果只有一个数,就不劳“以尽所投分同之”了。
作者:艾俊川
编辑:刘迪
责任编辑:任思蕴
*独家稿件,转载请注明出处。