>>>你知道超导是如何发现的吗?
像很多科学现象被发现的过程一样,超导现象也是在不断改进和提升技术的过程中被偶然发现的。
20 世纪初期,欧洲的机械工业化已经发展到了相当高的水平。当时世界上各个实验室都力图实现将沸点很低的氦气液化。1911 年,莱顿大学的卡末林·昂内斯 (H.KamerlinghOnnes) 成功地将氦气液化到 4.2K(-269°C),这为他研究物质在极低温度下的性质提供了方便,也是在这个时候,他偶然发现了水银的超导现象。这个发现为他赢来了两年后的诺贝尔物理学奖,同时也开启了科学家探索超导体的热潮。
1980 年代之前,超导的研究还集中在单元素金属和多元合金中。通常称这些金属或金属合金的超导体为常规超导体, 这些材料包括水银,铝,铅和其它金属合金如铌锡,铌钛和铌锗合金。它们的临界温度 Tc(即从导体转变为超导体的温度)在 20K 以下,这个温度和液态氢的沸点差不多。
彼时,超导转变温度太低,需要昂贵的液氦设备,科学家努力探索提高超导临界温度的途径。只是历史的发展总是一样,在一件标志性事件发生之前,人类的想像力总是受限,金属类的超导似乎并不能满足人们对高温超导的期望。
这一件标志性的事件发生在 1986 年。
IBM 苏黎世研究院的德国科学家柏诺兹(J.Georg Bednorz) 和缪勒 (Karl A.Muller) 科学家对一种陶瓷材料已经研究了很久,这一年年底,他们发现钡镧铜氧化物(BaLaCuO 或 LBCO)在 33K 以下表现出了超导的特性。
现在来看,这个临界温度比它的金属前辈并没有高出多少,但是在那个年代已经是很高的温度了,而且突破了液氢的沸点,从此便可以用更廉价方便的液氮来降温。这两位科学家次年便被授予了诺贝尔物理学奖,这是为数不多的几次诺奖被授予了新的发现,可见这次高温超导的重要性。
这是一个伟大的发现,它开创了高温超导体的井喷时代。在随后的十年里,陆续有新的铜氧化物在高温下表现出超导特性,临界温度从最开始的 33K 一路升到了 98K (YBaCuO)。1993 年,汞钡钙铜氧系统 (HgBaCaCuO) 的临界温度达到了最高的 138K(常压),在高压下(30 万个大气压)甚至可以达到 164K。而迄今为止最高的记录是 2015 年的 203K,值得注意的是,这一记录保持者不是铜氧系统,而是高压下的锍化氢系统。
虽然 203K(-70°C)比南极温度还要低上那么一点点,但是它极大激发了人们的想像。南极已经到了,赤道还会远吗?这些高温超导中是否可以找到一些室温超导的蛛丝马迹呢?
超导本质上是一个量子现象。1957 年,Bardeen、Copper 和 Schrieffer 提出著名的 BCS 理论,对这一现象做了很好的解释。晶体的晶格振动往往以声子的形式呈现,电子与声子的相互作用可以产生一种“胶水”,使本来相互排斥的电子互相吸引,两两成对,这些配对的电子被叫做库珀对 (Cooper)。当材料的温度降低到临界温度以下时,所有电子库珀对都处于有序的相干的基态,它们像液体一样,共同从导体中穿过,与晶格之间不再发生散射。宏观上看,电子就在导体中无障碍传输了。而临界温度的存在,是因为较高温度下的晶格振动对库珀对造成了破坏。三人因此理论获得了 1972 年的诺贝尔物理学奖。
美国科学家麦克米兰基于 BCS 理论计算,认为超导临界温度不太可能超过 39K(-234℃),39K 这个温度也被称为“麦克米兰极限”。这个极限温度一度被主流学界所接受。
编辑:金婉霞
责任编辑:许琦敏
来源:综合自网络