基于三维集成芯片的光量子计算原型机来了!上海首次在实验上实现了“快速到达”问题的量子加速算法
最新一期国际权威学术期刊《自然?光子学》发表了上海交通大学金贤敏研究团队最新研究成果,报道了首个基于光子集成芯片的物理系统可扩展的专用光量子计算原型机,首次在实验上实现了“快速到达”问题的量子加速算法。
该研究团队在飞秒激光直写制备的三维光量子集成芯片中成功构建了大规模六方粘合树并演示了量子快速到达算法内核,相比经典情形展示了平方级加速,而且最优效率达到90%以上,比经典算法提高一个数量级。该项研究开启利用量子系统的维度和尺度作为全新资源研发专用光量子计算机的路线图。
近年来,关于通用量子计算机的新闻屡见于报端,IBM、谷歌、英特尔等公司争相宣告实现了更高的量子比特数纪录。但是业界共识是,即使做出几十个甚至更多量子比特数,如果没有做到全互连、精度不够并且无法进行纠错,通用量子计算仍然无法实现。即使以现在各种量子比特载体可以实现的极限操控精度,进行量子纠错,通用量子计算机需要高达上百万个量子比特才能真正超越经典计算机。
专用量子计算,由于可以直接构建量子系统,不需要依赖复杂的量子纠错,因而相对于通用量子计算具有更灵活的实现方式和更高的可行度。一旦能够制备和控制的量子系统达到全新尺度,将可以直接用于探索新物理和在特定问题上推进远超经典计算机的绝对计算能力。量子行走作为专用量子计算的重要内核,已经在许多优化算法中被理论预测具有明显量子加速效果。其中,对于粘合树结构上的快速到达(Fast Hitting)问题,量子行走的优势尤为突出。量子行走具有天然的叠加态特性,在面对分叉选择的时候,不是选择左或者右,而是可以选择左和右的叠加态,使得量子行走在粘合树结构上可以轻松“快速到达”,对优化、搜索等实际问题都有潜在的广泛应用前景。只是,常规的二叉粘合树的节点数目随着层数增加呈指数级增加,会迅速耗尽几何上的制备空间,因此是不可扩展的。
今年5月,金贤敏团队在美国《科学》杂志子刊Science Advances上发表了世界最大规模的光量子计算集成芯片,并演示了首个真正空间上的二维量子行走。这项工作通过增加量子演化维度和系统尺度的方式来提升量子态空间的尺度,比经典计算的最优到达率提高了一个数量级,提供了一种可行的非常有前景的量子计算和处理资源。
在此基础上,金贤敏团队提出了一种具有充分可扩展性的六方粘合树结构,并通过飞秒激光直写技术成功映射到三维光量子集成芯片中。这种六方粘合二叉树结构,即使层数很大,都可以在芯片中很好地用三维波导来实现。
作者:沈湫莎
编辑:朱颖婕
责任编辑:顾军
*独家稿件,转载请注明出处。